4.3 PRACTICE

Mark the picture. Answer the question. Prove it.
16.

Given: R is the midpoint of $\overline{S I}$ $\overline{\boldsymbol{H I}} \| \overline{\boldsymbol{S Q}}$

Prove: $\triangle R Q S \cong \triangle R H I$

WHY ARE THE TWO TRIANGLES CONGRUENT? I did ASA but you could do AAS as well (NOTE: THE STEPS CAN BE IN A DIFFERENT ORDER!)

STATEMENTS		
1. R is the midpoint of $\overline{S I}$ $\overline{H I} \\| \overline{S Q}$	1. Given	
2. $\overline{S R} \cong \overline{R I}$	2. Definition of Midpoint	
3. $\angle H R I \cong \angle S R Q$	3. Vertical Angles are congruent	
4. $\angle S \cong \angle I$	4. Alternate Interior Angles are congruent	
5. $\Delta R Q S \cong \triangle R H I$	5. ASA	

Mark the picture. Answer the question. Prove it.
17.

Given: $\overline{G E}$ is the angle bisector of $\angle L E F$

$$
\angle L \cong \angle F
$$

Prove: $\triangle L E G \cong \triangle F E G$

WHY ARE THE TWO TRIANGLES CONGRUENT? AAS

STATEMENTS	REASONS
$1 . \overline{G E}$ is the angle bisector of $\angle L E F$ $\angle L \cong \angle F$	1. Given
2. $\angle L E F \cong \angle F E G$	2. Definition of Angle Bisector
3. $\overline{G E} \cong \overline{G E}$	3. Reflexive Property
4. $\Delta L E G \cong \triangle F E G$	4. AAS

