4.3 PRACTICE

Mark the picture. Answer the question. Prove it.

16.

Given: R is the midpoint of \overline{SI}

 $\overline{HI} \parallel \overline{SQ}$

Prove: $\Delta RQS \cong \Delta RHI$

WHY ARE THE TWO TRIANGLES CONGRUENT? I did \mathbf{ASA} but you could do \mathbf{AAS} as well

(NOTE: THE STEPS CAN BE IN A DIFFERENT ORDER!)

STATEMENTS	REASONS
1. <i>R</i> is the midpoint of \overline{SI} $\overline{HI} \parallel \overline{SQ}$	1. Given
2. $\overline{SR} \cong \overline{RI}$	2. Definition of Midpoint
3. ∠HRI ≅ ∠SRQ	3. Vertical Angles are congruent
$4. \ \angle S \cong \angle I$	4. Alternate Interior Angles are congruent
5. $\Delta RQS \cong \Delta RHI$	5. ASA

Mark the picture. Answer the question. Prove it.

17.

Given: \overline{GE} is the angle bisector of $\angle LEF$

 $\angle L \cong \angle F$

Prove: $\Delta LEG \cong \Delta FEG$

WHY ARE THE TWO TRIANGLES CONGRUENT? AAS

STATEMENTS	REASONS
1. \overline{GE} is the angle bisector of $\angle LEF$	
$\angle L \cong \angle F$	1. Given
2. $\angle LEF \cong \angle FEG$	2. Definition of Angle Bisector
3. $\overline{GE} \cong \overline{GE}$	3. Reflexive Property
4. $\Delta LEG \cong \Delta FEG$	4. AAS