6.2 Proving Triangles Similar

NOTES

Are these similar?

Angle Angle Postulate		
Postulate If two angles of one triangle are congruent to two angles of another triangle,	If...	Then...

Side Angle Side Theorem

Postulate	If...	Then...
If an angle of one triangle is congruent to an angle of a second triangle, and the sides that include the two angles are proportional, then	$\frac{B O}{M A}=-\quad$ and $\angle O \cong \angle A$	

Example:

Side Side Side Postulate

Postulate	If...	Then...
If the corresponding sides of two		
triangles are proportional,	$\frac{E A}{L O}=\frac{A R}{O B}=-$	

Example:

Determine if the following triangles are similar. If so, state the reason why.

Summarize your notes!

6.2 PRACTICE

State if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement.

10.

$\triangle V U T \sim$ \qquad
11.

$\triangle T U V \sim$ \qquad
12.

$\triangle E F G \sim$ \qquad

Explain why the triangles are similar. Then find x.

13.

14.

ALGEBRA REVIEW		
SOLVE Simplify your solution $3 x^{2}=54$	$y=-\frac{x}{4}-2 \begin{aligned} & \text { GRAPH } \\ & \\ & \\ & \\ & \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MULTIPLY } \\ & (x-5)(x+5) \end{aligned}$
SOLVE Simplify your solution $x^{2}-7=21$		FACTOR $x^{2}+14 x+45$

6.2 APPLICATION

State if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement.
1.

$\Delta U T S \sim$ \qquad
2.

$\triangle U T S \sim$ \qquad

Watch the application walk through video if you need extra help getting started!

Fill in the missing angles and then state if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement.
3.

6. Mr. Sullivan is lost at sea and freaking out in his little sailboat. He will swim for the shore if he is 70 meters or less. Find x and decide if Sully should swim for it (his life depends on it).

THESE ARE JUST LIKE UNIT 4 TRIANGLE CONGRUENCE PROOFS!!! $A A \sim, S A S \sim, S S S \sim$

7. Fill in the blanks		
Given: $\overline{M P} \\| \overline{A C}$		
Prove: $\triangle A B C \sim \triangle P B M$		
STATEMENTS		
1. $\overline{M P} \\| \overline{A C}$	1.	
2. $\angle C \cong \angle M$	2.	
3. $\angle C B A \cong \angle M B P$	3.	
4. $\triangle A B C \sim \triangle P B M$	4.	

8. COORDINATE GEOMETRY

a. Plot the following points to make a triangle.

P (-4,1)
C $(-4,3)$
S (-1,1)
b. Plot the following points to make a triangle.

R (1, 3)
A $(1,9)$
T (10, 3)

c. Use $S A S \sim$ to prove $\triangle \boldsymbol{P C S} \sim \triangle \boldsymbol{R} \boldsymbol{A T}$
(Feel free to use a 2-column proof, flow chart, paragraph proof, or just freestyle it)

