Name the property that justifies each statement.

1) If \(x + 3 = 10 \), then \(x = 7 \).
2) If \(2x - 10 = 11 \), then \(6x - 30 = 11 \).
3) If \(12 - x = y \), then \(y = 12 - x \).
4) \(AB = AB \). Reflexive Prop. of equality
5) \(\frac{1}{2}x = 10 \), then \(x = 20 \).
6) \(m\angle SEF = 60^\circ \), \(m\angle DEF = 14x + 8 \), and \(m\angle DES = 9x + 8 \). Find \(m\angle DES \).

Find the measure of each angle indicated.

7) \(\triangle TRS \):
 - \(\angle T = 82^\circ \)
 - \(\angle S = 56^\circ \)

Solve for \(x \).

8) \(x + 63 \) + \(x + 123 \) = 180
 - \(2x + 186 = 180 \)
 - \(2x = -6 \)
 - \(x = -3 \)

9) \(80^\circ \), \(60^\circ \):
 - \(x + 52 \)
 - \(192 + x = 180 \)
 - \(x = -12 \)

Find the value of \(x \) that makes lines \(u \) and \(v \) parallel.

10) \(2x - 6 \) + 2 = \(x + 123 \)
 - \(\frac{2}{1} = \frac{2x - 6}{2} \)
 - \(4 = 2x - 6 \)
 - \(x = 5 \)

Find the measurement indicated in each parallelogram.

11) \(21x - 1 \) + \(9 + 19x \)
 - \(2x = 10 \)
 - \(x = 5 \)

Solve for \(x \). Each figure is a parallelogram.

12) \(TQ = 7x - 3 \)
 \(OV = 5x + 3 \)
 Find \(TQ \)
 - \(5x + 3 = 7x - 5 \)
 - \(7x = 7 \)
 - \(x = 1 \)
 - \(\angle TQ = 7(1) - 3 = 4 \)

13) \(-2 + 16x + 70 = 180 \)
 \(16x + 68 = 180 \)
 \(16x = 112 \)
 \(x = 7 \)
Write the slope-intercept form of the equation with the given information.

14) through: \((-1, 4)\) and \((-4, 1)\)

\[
\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \quad \rightarrow \quad y = mx + b
\]

\[
\frac{4 - 1}{-1 - (-4)} = \frac{-3}{3} = -1
\]

\[
y = -1x + b
\]

Find the midpoint and distance between each pair of points.

15) \((-1, -4), (-7, 4)\)

\[
\begin{align*}
\text{Midpt} & = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \\
& = \left(\frac{-1 + (-7)}{2}, \frac{-4 + 4}{2}\right) \\
& = (-4, 0)
\end{align*}
\]

16) \((-3, 2), \left(\frac{1}{2}, -1\right)\)

\[
\begin{align*}
\text{Distance} & = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\
& = \sqrt{\left(\frac{1}{2} - (-3)\right)^2 + (-1 - 2)^2} \\
& = \sqrt{\left(\frac{7}{2}\right)^2 + (-3)^2} \\
& = \sqrt{\frac{49}{4} + 9} \\
& = \sqrt{\frac{49 + 36}{4}} \\
& = \sqrt{\frac{85}{4}} \\
& = \frac{\sqrt{85}}{2}
\end{align*}
\]

List all information given by the marks on the diagram.

17) \(\angle EDC \cong \angle FCD\)

\[
\overline{DB} = 8\overline{C}
\]

Name the relationship: complementary, linear pair, or vertical.

18) Complementary

19) Vertical

20) Adjacent

Find the value of \(x\).

21) \((4x + 2)^\circ, 66^\circ\)

\[
\begin{align*}
4x + 2 & = 66 \\
4x & = 64 \\
x & = 16
\end{align*}
\]

Classify each triangle by its sides (scalene, isosceles, or equilateral) as well as by its angles (acute, obtuse, or right).

22) \(\text{Isosceles} + \text{Obtuse}\)
Write a statement that indicates that the triangles in each pair are congruent.

\[\triangle XWV \cong \triangle CBA \]

Find the value of \(x \).

\[2x + 84^\circ = 180^\circ \]
\[2x = 96^\circ \]
\[x = 48^\circ \]

Mark the angles and sides of each pair of triangles to indicate that they are congruent.

\(\triangle SRQ \cong \triangle SJK \)

State if the two triangles are congruent. If they are, state how you know.

\(\triangle 26 \)

SSS

\(\triangle 27 \)

Not congruent

\(\triangle 28 \)

ASA

\(\triangle 29 \)

Not congruent

\(\triangle 30 \)

HL

\(\triangle 31 \)

AAS

Find the measure of one exterior angle in each regular polygon. Round your answer to the nearest tenth if necessary.

\(\triangle 32 \) regular 18-gon

\[\frac{360}{18} = 20^\circ \]
33) \[\frac{360}{q} = 90 \]

Find the measure of one interior angle in each polygon. Round your answer to the nearest tenth if necessary.

34) \(\frac{(8-2)180}{8} = 135 \)

Find the length of the midsegment of each trapezoid.

36) \[\frac{12 + 18}{2} = 15 \]

Solve for \(x \). Each figure is a trapezoid.

37) \(RP = 11 \)
\(SQ = 6x - 1 \)

38) \[56x - 2 + 70 = 180 \]
\[56x + 48 = 180 \]
\[56x = 142 \]
\[x = 2 \]

Find the missing length indicated.

39) \[x = 10 \]

The following triangles are similar. Fill in the blank (order is important). Find the scale factor.

40) \[\Delta NML \sim \Delta NCD \]

\[\frac{SF}{30} = \frac{6}{7} \]
\[\frac{LC}{35} = \frac{7}{6} \]
State if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement.

\[
\triangle ABC \sim \text{Not Similar}
\]

The polygons in each pair are similar. Find the missing side length.

Solve for \(x \). The triangles in each pair are similar.

Find the missing length indicated.

Did you check your answers to the Skills Part?
Geometry Semester 1 Exam Review Applications

UNIT 1: Tools for Geometry
1. Mr. Kelly is really good at flow charts. Help him answer the following:

Mark the picture with the following.

a. \(AB \cong BC \)

b. \(BF \) is the angle bisector of \(\angle ABC \)

c. \(\angle BFD \) is a right angle

d. \(F \) is the midpoint of \(DE \)

Use the info to find the following.

e. Use letters to name \(\angle 1 \).

\[\angle ABF \]

f. Given \(AB = 5x + 3 \) and \(BC = 3x + 13 \), find \(x \) and \(AB \)

\[
5x + 3 = 3x + 13
\]
\[
2x = 10
\]
\[
x = 5
\]

UNIT 2: Reasoning and Proof

2. Use the diagram to complete the proof that \(m\angle ACD = 130 \) by filling in the missing steps.

\[A \quad 6x \quad C \quad 8x + 40 \quad D \]

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (m\angle ACB = 6x; m\angle ACD = 8x + 40)</td>
<td>A. Given</td>
</tr>
<tr>
<td>B. (m\angle ACB + m\angle ACD = 180)</td>
<td>B. Linear Pairs are Supplementary</td>
</tr>
<tr>
<td>C. (6x + 8x + 40 = 180)</td>
<td>C. Substitution</td>
</tr>
<tr>
<td>D. (14x + 40 = 180)</td>
<td>D. Combine Like Terms</td>
</tr>
<tr>
<td>E. (14x = 140)</td>
<td>E. Subtraction Property of Equality</td>
</tr>
<tr>
<td>F. (x = 10)</td>
<td>F. Division Property of Equality</td>
</tr>
<tr>
<td>G. (m\angle BCE = 8(10) + 40 = 120)</td>
<td>G. Substitution</td>
</tr>
</tbody>
</table>
UNIT 3: Parallel Lines

3. Mr. Kelly is trying to make some cash for his favorite hobby, collecting Barbie dolls. After one week he still owes his wife one dollar but after three weeks he has now five dollars.

\[\begin{align*}
(1, -1) & \\
(3, 5) &
\end{align*} \]

a) What's Mr. Kelly's slope (rate of change) for this situation?

\[\frac{5 - (-1)}{3 - 1} = \frac{6}{2} = 3 \]

b) What's Mr. Kelly's y-intercept (initial value) for this situation?

\[\begin{align*}
y &= mx + b \\
5 &= 3(3) + b \\
5 &= 9 + b \\
b &= -4
\end{align*} \]

c) Write an equation of the line for the given situation. Graph the line.

\[y = 3x - 4 \]

\[\rightarrow 8 \text{ weeks} \]

\[y = 3(8) - 4 \]

\[= 24 - 4 \]

\[= 20 \]

UNIT 4: Triangle Congruence

4. Fill in the blanks on the proof below.

Given: \(\overline{LK} \cong \overline{GM} \)

\(\overline{LK} \parallel \overline{GM} \)

Prove: \(\triangle LGM \cong \triangle MGL \)

<table>
<thead>
<tr>
<th>STATEMENTS</th>
<th>REASONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{LK} \cong \overline{GM}) (\overline{LK} \parallel \overline{GM})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle LMG \cong \angle MLK)</td>
<td>2. If 2 lines are parallel, then all 3 lines are congruent</td>
</tr>
<tr>
<td>3. (\overline{LM} \cong \overline{LM})</td>
<td>3. Reflexive Property</td>
</tr>
<tr>
<td>4. (\triangle LGM \cong \triangle MGL)</td>
<td>4. SAS</td>
</tr>
</tbody>
</table>
UNIT 5: Quadrilaterals

5. The coordinates of the vertices of quadrilateral BRUS are B(-8, 1), R(0, 0), U(-1, -5) and S(-9, -4).
 a. Graph and label BRUS. (Use a straight edge and label the coordinates of each point!)
 b. Use the slope formula to determine if BRUS is a parallelogram. \(m = \frac{y_2 - y_1}{x_2 - x_1} \)

 - Slope \(\overline{BR} = \frac{1-0}{-8-0} = -\frac{1}{8} \)
 - Slope \(\overline{RU} = \frac{-5-0}{-1-0} = 5 \)
 - Slope \(\overline{US} = \frac{-4+1}{-9+1} = \frac{1}{-8} \)
 - Slope \(\overline{SB} = \frac{-5+1}{-4+8} = \frac{5}{4} \)

Is BRUS a parallelogram? \(_Y__ \)

How do you know? Opposite sides have same slope which means opposite sides are parallel.

UNIT 6: Similar Figures

6. Find the height of the tree in the following:

 a. \(\frac{2.4}{30} = \frac{2}{x} \)
 \(2.4x = 60 \)
 \(x = 25 \text{ m} \)

 b. \(\frac{8}{12} = \frac{1.8}{x} \)
 \(8x = 21.6 \)
 \(x = 2.7 \text{ m} \)