\qquad

A \qquad , is a convincing argument that uses deductive reasoning. Every statement you make must be justified with a valid property. The following properties will be super valuable:

Property	Example	
	If you are given: Then you can conclude:	$x-5=12$
	If you are given: Then you can conclude:	$x+6=15$
	If you are given: Then you can conclude:	$1 / 5 x=-2$
	If you are given: Then you can conclude:	$2 x=8$
	If you are given:	$y=2 x+2$ and $x=5$

Then you can conclude:
Other Important Properties
If you are given:
30

Then you can conclude:
If you are given: $\quad 5=x$
Then you can conclude:
If you are given:

$$
y=j \text { and } j=-13
$$

Then you can conclude:
If you are given:
$12=3(x-9)$
Then you can conclude:
If you are given: $\quad y=3(4)-12$
Then you can conclude:
If you are given: $\quad 100=45 x-20 x$
Then you can conclude:
The Algemazing-Postulate ${ }^{*}$
Always conclude: $\operatorname{Coolness}_{(\text {Algebros })}>\sum \operatorname{Coolness}_{(\text {World })}$

The last postulate has yet to be proven, but the teachers of this course are pretty sure it's true based on how highly we think of ourselves. We are currently refusing outside input regarding this postulate.

Examples: Tell which property justifies each conclusion.

1. Given:

Conclusion:

$$
6 x+2=12
$$

$$
6 x=10
$$

3. Given:

Conclusion:

$$
\begin{aligned}
3 x-7 x & =20 \\
-4 x & =20^{\circ}
\end{aligned}
$$

5. If $a=r$ and $r=60^{\circ}$, then $a=60^{\circ}$.

$$
\begin{aligned}
\text { 2. } & \text { Given: } \\
\text { Conclusion: } & \\
& x=45=x
\end{aligned}
$$

4. Given:
$4(q-x)=r$
Conclusion: $\quad 4 q-4 x=r$
5. If B is the midpoint of $\overline{G H}$, then... \qquad
(???)

2 Column Proofs

A two-column proof lists each statement on the left with a justification on the right.
Each step follows logically from the line before it.
Fill in the missing statements or reasons for the following two-column proof.

Given: $45+2(x-10)=85$
Prove: $x=30$
\leftarrow This line tells you everything that has been \qquad , or everything that is known to be true. \leftarrow This line tells you what you must \qquad _.

Given: $4 x-2(2-x)=4 x-24$
Prove: $x=-10$

	Statement		Reason
$\begin{gathered} N \\ \# \\ 0 \\ 0 \\ \hline \frac{1}{n} \\ \frac{1}{0} \\ \mathbb{U}^{x} \end{gathered}$	1.		1.
	2.	$-2(2-x)=-24$	2.
	3.	$2-x=12$	3.
	4.	$-x=10$	4.
	5		5.

Given: $3 x+4 y=23 ; x=1$
Prove: $y=5$
Reason

Solve each equation for x !
Multiply!
Factor!

1. $10 x-3=12$	2. $2 x+-4=3 x-4$	3. $x(x-3)$	4. $2 x^{2}-32 x$	
5. Graph the equation:	${ }^{5}$	6. Graph the equation:	$\square^{-} \mid$	$\cdots+$
	-		- ${ }^{4}$	
$y=-x$			-	
			-	
			-54.3:2-1	
	\square		$\square \times$	\square
	-		$\square-{ }_{-}$	
	${ }^{5}$		${ }_{5}^{4 .}$	

4 PACKET 2.2: INTRO TO PROOFS

Practice 2.2: Introduction To Proofs

Support each conclusion with a valid reason.
$\begin{aligned} \text { 1. } & \text { Given: } & x-42 & =12 \\ & \text { Conclusion: } & x & =54\end{aligned}$
2. Given: $\quad 23(2+x)=230$
Conclusion: $\quad 2+x=10$
4. Given: $-x=34$
5. If $12=d$ and $d=x$,
6. $\overline{G H} \cong \overline{G H}$
Conclusion: $\mathrm{x}=-34$

$$
\text { then } 12=x
$$

3. Given: $3 x-7 x=20$

Conclusion: $-4 x=20^{\circ}$

Fill in the missing statements or reasons for the following two-column proof.

	Given: $10-3(4 x-2)+1=77 \quad$ Prove: $x=-5$
Statement Reason	
1.	1.
2. $-3(4 x-2)+1=67$	2.
3. $-3(4 x-2)=66$	3.
4. $-12 x+6=66$	4.
5. $-12 x=60$	5.
6.	6.

Application 2.2: Introduction To Proofs

Support each conclusion with a valid reason.

1. Given:
Conclusion:
$x=2$
2. Given: $x=3.14$
Conclusion: $\quad 3.14=x$
3. Given: $3(x-2)=21$
Conclusion: $\quad 3 x-6=21$

Geometry Properties. Draw a picture to represent each situation and then tell WHY each conclusion can be made:
4. Given: $\overrightarrow{A B}$ is the bisector of $\Varangle D A C$ Conclusion: $\Varangle D A B \cong \Varangle C A B$

Picture:
5. H is the midpoint of $\overline{Q R}$

Conclusion: $\overline{Q H} \cong \overline{H R}$
Picture:

Reason: \qquad
6. Given: Point B is on $\overline{A C}$ Conclusion: $A B+B C=A C$

Picture:

Reason: \qquad

Write the reasons for the proofs below:

statement	Reason
1. $m \Varangle 1=m \Varangle 3$	1.
2. $m \Varangle 2=m \Varangle 2$	2.
3. $m \Varangle 1+m \Varangle 2=m \Varangle 3+m \Varangle 2$	3.
4. $m \Varangle 1+m \Varangle 2=m \Varangle A E C$	4.
5. $m \Varangle 3+m \Varangle 2=m \Varangle D E B$	5.
6. $m \Varangle A E C=m \Varangle D E B$	6.

