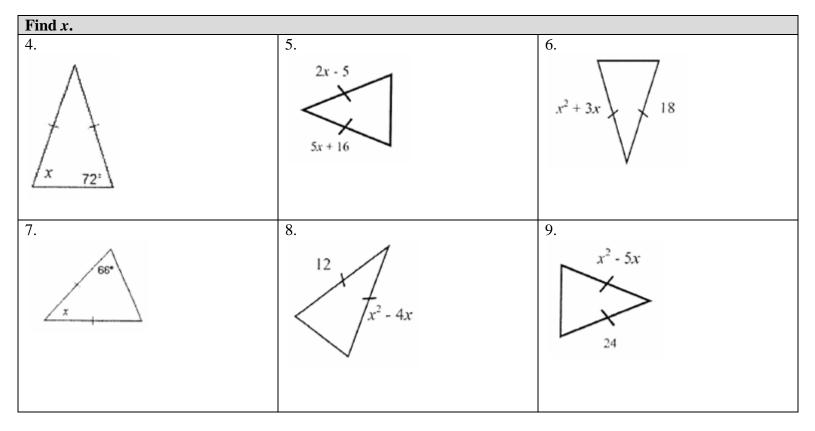
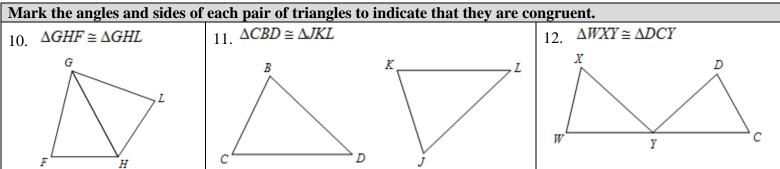
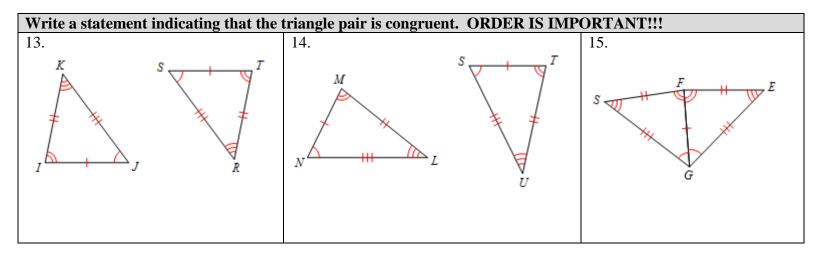
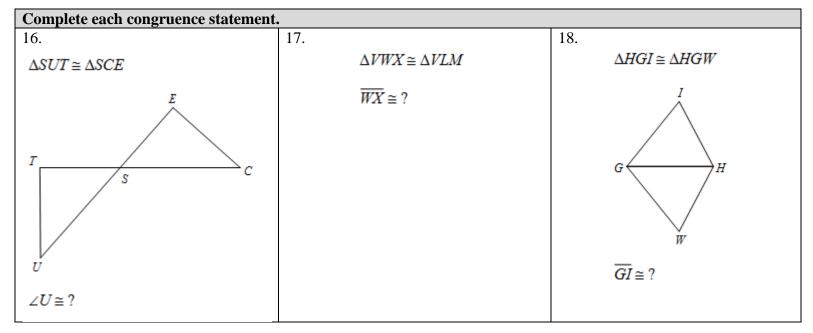

4.1 Triangles and Congruent Figures

	NOTES		0
Write your		Types of triangles	
questions here!	ACUTE	OBTUSE	RIGHT
	SCALENE	ISOSCELES	EQUILATERAL
	Is Theorem If two sides of a triangle are congruent, then	osceles Triangle Theore If	m Then
	Converse	of the Isosceles Triangle	Theorem
	Theorem If two angles of a triangle are congruent, then	If	Then
	48° x		

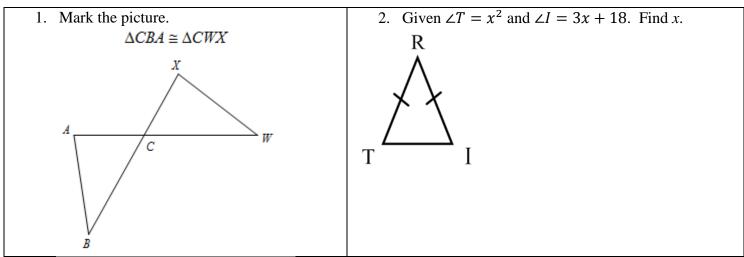

Write your	Equilateral Triangle Theorem		
questions here!	Theorem If a triangle is equilateral, then	If	Then
	Converse of	of the Equilateral Trians	gle Theorem
	Theorem If a triangle is equiangular, then	If	Then
	Congruent Figures- Corresponding Parts-		
	Example #1 $\Delta EFG \cong \Delta ZXY$	Example #	2
	$G \xrightarrow{E} F \xrightarrow{X} F$		
	Try it!		
	$\Delta RTS \cong \Delta TRG$	$\Delta ZXY \cong \Delta ZXJ$	$\Delta LMN\cong \Delta IHN$
	S = ?	$\overline{YZ} \cong ?$	$\angle MNL \cong ?$


Summarize your notes:




4.1 PRACTICE

Draw the following. Mark the picture!!!		
1. Obtuse Isosceles Triangle	2. Acute Equilateral Triangle	3. Right Scalene Triangle



ALGEBRA REVIEW		
SOLVE	GRAPH	MULTIPLY
2(3x-4) - 5 = -7	$y = \frac{3}{4}x$	(2x-3)(x+3)
SOLVE	GRAPH	FACTOR
$\frac{x}{5} = \frac{x+2}{15}$	y = x	$x^2 - 4x - 12$

4.1 APPLICATION

Watch the application walk through video if you need extra help getting started!

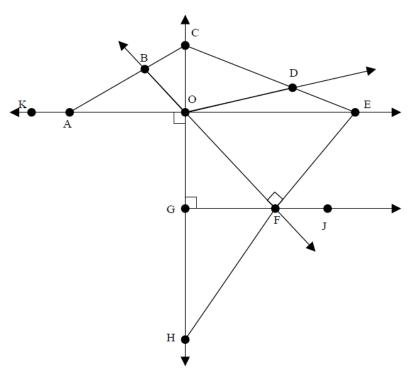
In order to prove that two triangles are congruent, you must show that every corresponding angle and every corresponding side is congruent.

3. Mark the picture and then prove it. Show ALL SIDES and ALL ANGLES $\cong !!!$

Given: $\overline{GI} \parallel \overline{TR}$ <i>H</i> is the midpoint of \overline{GT} $\overline{GI} \cong \overline{RT}$ $\overline{HR} \cong \overline{IH}$ Prove: $\triangle GHI \cong \triangle THR$	
STATEMENTS	REASONS
1. $\overline{GI} \parallel \overline{TR}$ <i>H</i> is the midpoint of \overline{GT} $\overline{GI} \cong \overline{RT}$ $\overline{HR} \cong \overline{IH}$	1.
2. $\overline{GH} \cong \overline{HT}$	2.
3. $\angle G \cong \angle T$	3. Alternate Interior Angles are congruent
4. $\angle I \cong \angle R$	4.
5.	5.
6. $\Delta GHI \cong \Delta THR$	6. Definition of Congruent Triangles

4. Mark the picture and then prove it. Show ALL SIDES and ALL ANGLES $\cong !!!$

Given: ΔVXW is an isosceles triangle with base \overline{VW} \overline{XP} is an angle bisector of $\angle VXW$ P is the midpoint of \overline{VW} $\angle VPX \cong \angle WPX$ Prove: $\Delta PVX \cong \Delta PWX$		
STATEMENTS	REASONS	
1. ΔVXW is an isosceles triangle \overline{XP} is an angle bisector of $\angle VXW$ P is the midpoint of \overline{VW} $\angle VPX \cong \angle WPX$	1.	
2. $\overline{XP} \cong \overline{XP}$	2.	
3. $\overline{VX} \cong \overline{XW}$	3.	
4.	4.	
5. $\angle VXP \cong \angle WXP$	5.	
6. $\angle XVP \cong \angle XWP$	6.	
7. $\Delta PVX \cong \Delta PWX$	7.	


5. Fill in the measure of every angle:

GIVEN:

Γ

 $m \angle \text{KAB} = 148^{\circ}$ $m \angle \text{EOF} = 45^{\circ}$ $m \angle \text{DEF} = 65^{\circ}$ $m \angle \text{ODE} = 145^{\circ}$ $m \angle \text{JFH} = 122^{\circ}$

Name any isosceles triangles.

