# 1.2 Measuring Segments

Write your questions here!

**NOTES:** 



 $\overline{ST} =$ 

$$ST =$$

$$AB = 4 cm$$
$$BC = 4 cm$$

$$A \stackrel{B}{ }$$

**Equal versus Congruent** 

| $B \Delta AB$ | C is isosceles |
|---------------|----------------|
| $\wedge$      |                |
|               |                |
| / \           |                |

| Term                                                    | Picture                                                          |
|---------------------------------------------------------|------------------------------------------------------------------|
| <b>Midpoint</b> = The point that divides a segment into | $A$ is the midpoint of $\overline{CT}$                           |
|                                                         |                                                                  |
| <b>Segment bisector</b> = A point, line or ray that     | $\overrightarrow{KE}$ is the segment bisector of $\overline{JO}$ |
|                                                         |                                                                  |

**Given** O is the midpoint of  $\overline{DG}$ 

$$DO = 6x - 7$$

$$OG = 5x + 1$$



Find DG

# Write your questions here!

## **Coordinate Geometry**

**EASY** 



Midpoint of  $\overline{AB} =$ 

Distance of  $\overline{AB} =$ 

**NOT SO EASY** 

**Midpoint of**  $\overline{CD} =$ 

Distance of  $\overline{CD} =$ 

## The Midpoint Formula

### **The Distance Formula**

 $\overline{ME}$  has the endpoints of M(-6, 4) and E(5, -2). Find the midpoint and distance of ME.

Midpoint of  $\overline{ME} =$ 

Distance of  $\overline{ME} =$ 



**Summarize your notes:** 

## 1.2 PRACTICE

#### For questions 1-4, use the picture on the right

- 1. Find AB
- 2. Find EC
- 3. What is the midpoint of  $\overline{CE}$ ?
- 4. Is  $\overline{BD} \cong \overline{CA}$ ? Explain why or why not?



Label the picture, then find the length of the given segment.

5.



*I* is the midpoint of  $\overline{BG}$ 

$$BI = 4y + 8$$

$$IG = 20$$

Find BG

6.



 $\overline{FU}\cong \overline{UN}$ 

$$FU = 5x + 3$$

$$UN = 7x - 9$$

Find FN

7.



 $\overrightarrow{EH}$  bisects  $\overline{YA}$ 

$$EA = 2x + 5$$

$$YE = 3x - 9$$

Find YA

For questions 8 and 9, use the picture on the right

11. If AD = 12 and AC = 4y - 36, find the value of y. Then find AC and DC.

12. If ED = x + 4 and DB = 3x - 8, find ED, DB, and EB.



| Find the midpoint and distance given | the two endpoints |
|--------------------------------------|-------------------|
| 13.                                  | 14.               |

(12,15) and (-8, -22)

(-3,5) and (14, 28)



15.

Draw and label a picture for each of the following. Indicate what line segments are congruent (if any).

16. *A* is the midpoint of  $\overline{HT}$ 

17.  $\overline{DQ}$  bisects  $\overline{RF}$  at M

18.  $\overrightarrow{TM}$  bisects  $\overline{WE}$  at T



# 1.2 APPLICATION

1. Label the picture and find the missing segment.



*L* is the midpoint of  $\overline{FY}$ 

$$FL = 6x - 9$$

$$LY = 3x + 3$$

Find x and then find FL, LY, and FY

2. Find the distance and midpoint between the two endpoints.

#### Watch the application walk through video if you need extra help getting started!

#### 3. MAP

Since Mr. Kelly gets lost so easily he decides to lay a coordinate system over the map to help him navigate. Point H is Mr. Kelly's house and point N is where Mr. Kelly's favorite nail salon where he gets his manicures and pedicures.

- a. Find the distance between Mr. Kelly's house and his nail salon.
- b. Mr. Kelly always has time for a facial which is conveniently located in the exact middle between his house and his nail salon. Find the coordinates of his facial and label it on the graph point *F*.



#### 4. Geometric Shape

Mr. Sullivan is really into fancy bling. He picks up the diamond (rhombus) shown below and starts thinking.

#### Mark the following on the picture.

a. 
$$\overline{SU}\cong \overline{UL}\cong \overline{LY}\cong \overline{YS}$$

- b. Draw  $\overline{UY}$  bisects  $\overline{SL}$  at C
- c. C is the midpoint of  $\overline{UY}$

#### Find the following...

d. 
$$SU = 2x + 6$$
 and  $UL = 9 - x$   
Find x and  $SU$ 



e. What is the perimeter of rhombus SULY?

#### 5. Proof

Label the picture and fill in the missing reasons in the two column proof.

**Given:** F is the midpoint of  $\overline{EG}$ 

$$EF = 8x - 14$$

$$FG = 4x + 1$$

**Prove:** 
$$x = \frac{15}{4}$$

| • | • | - |
|---|---|---|
| E | F | G |

| STATEMENT                                                                | REASON |
|--------------------------------------------------------------------------|--------|
| 1. $F$ is the midpoint of $\overline{EG}$<br>EF = 8x - 14<br>FG = 4x + 1 | 1.     |
| 2. $\overline{EF} \cong \overline{FG}$                                   | 2.     |
| $3. \ 8x - 14 = 4x + 1$                                                  | 3.     |
| $4. \ 4x - 14 = 1$                                                       | 4.     |
| 5. $4x = 15$                                                             | 5.     |
| 6. $x = \frac{15}{4}$                                                    | 6.     |

#### Some possible reasons:

- Given
- Addition Property of Equality
- Subtraction Property of Equality
- Multiplication Property of Equality
- Division Property of Equality
- Substitution
- Distributive Property
- Combine like terms
- Definition of \_
- Postulate
- Theorem

#### 6. Coordinate Geometry

a. Graph the points

M(-2, 4)

A(6, 4)

T(6, -3)

H(-2, -3)

- b. Connect the points in order to make a rectangle.
- c. Draw in the diagonals  $\overline{MT}$  and  $\overline{AH}$ .
- d. Find the length of the diagonals  $\overline{MT}$  and  $\overline{AH}$ .



- e. Find the midpoints of both diagonals  $\overline{MT}$  and  $\overline{AH}$ .
- f. What appears to be true about the diagonals of the rectangle?