Write your questions here!

1.3 Measuring Angles

NOTES:

TERM	Name it	Picture
Angle = Two rays with	By its vertex:	
	By a number:	
	By a point on each ray and the vertex:	

$m \angle D O G=$
$\angle D O G=$

Equal versus Congruent

$m \angle A=70^{\circ}$
$m \angle B C A=70^{\circ}$

$\angle 1 \cong \angle 2$

Estimate and Measure Angles Using a Protractor

Classify Angles

Use the diagram to answer the following:
$\angle C B J \cong \square$
$\angle F J H \cong \square$
If $m \angle E F D=75$, then $m \angle J A B=\square$.
If $m \angle G H F=130$, then $m \angle J B C=\square$.

Term	Picture
Angle bisector $=$ A segment, ray, or line that divides an angle into	$\overrightarrow{K E}$ is the angle bisector
of $\angle K$	

Given
$\angle L O V \cong \angle V O E$
$m \angle L O V=7 x-14$
$m \angle V O E=$
Find x

Find $\boldsymbol{m} \angle \boldsymbol{L O V}$

Summarize your notes:

1.3 PRACTICE

Measure the following angles, then classify as acute, right, obtuse, or straight.

2.

Draw a figure that fits each description.
3. an obtuse angle, $\angle R S T$
4. a straight angle, $\angle R D M$
5. a right angle, $\angle R D M$ with an angle bisector of $\overline{T D}$.

Name the vertex and sides of the angle.
6.

Vertex $=$
Sides $=$

7.
Vertex =

Sides $=$

Name the angle four different ways.

9.

Name all the angles that have V as a vertex.
10.

11.

List all the information given by the diagram.

Label the picture and use it to answer the following.

15.

Given

$\overrightarrow{E I}$ is the angle bisector of $\angle M E K$ $m \angle M E I=34^{\circ}$
$m \angle I E K=3 x+7$
Find x

17.

Given
$\overrightarrow{T M}$ is the angle bisector of $\angle I T Y$ $m \angle I T M=3 x+15$
$m \angle M T Y=7 x-13$
Find x

18.

Given

$\angle R B O \cong \angle S B O$
$m \angle S B O=5 x+29$
$m \angle R B O=2 x+20$
Find x

ALGEBRA REVIEW		
$\begin{gathered} \text { SOLVE } \\ -12=10-4 y \end{gathered}$		MULTIPLY (distribute) $5(4 x-3)$
$\begin{gathered} \text { SOLVE } \\ 13-2 y=5 y-8 \end{gathered}$		FACTOR Factor out the greatest common factor (undistribute) $10 x^{2}+15 x$
	1.3 APPLICATION	

1. List all the information given by the diagram. Cles
2. Draw the picture, label everything, find x, find $m \angle H A T$ Obtuse angle $\angle C A T$ with angle bisector of $\overrightarrow{A H}$
$m \angle C A H=3 x+56$
$m \angle H A T=2 x+60$

Watch the application walk through video if you need extra help getting started!

3. Geometric Shape

Mr. Kelly loves isosceles trapezoids (below). Help him mark his favorite shape with the following truths:
Isosceles Trapezoid TIMY
a. $\angle I T A \cong \angle M Y C$
b. $\angle T I M \cong \angle I M Y$
c. $\angle I A C$ and $\angle M C Y$ are right angles
d. $\overline{T I} \cong \overline{M Y}$
e. $\overline{A T} \cong \overline{C Y}$
f. $\overline{M I} \cong \overline{C A}$

4. Coordinate Geometry

a. Graph the points
$T(-4,6)$
$R(2,-3)$
$I(10,-2)$
b. Connect the points in order to make a triangle, $\Delta T R I$.
c. Name the obtuse angle.
d. Measure the obtuse angle.

e. Find the coordinates of the midpoint of $\overline{T I}$.

Plot on this point on the graph as point P
f. Draw $\overrightarrow{R P}$ are the graph.
g. If $\overrightarrow{R P}$ was the angle bisector of $\angle T R I$, what would have to be true!

5. Proof

Label the picture and fill in the missing reasons in the two column proof.
Given: $\overrightarrow{O B}$ is the angle bisector of $\angle R O S$ $m \angle R O B=35$
$m \angle B O S=4 x+3$
Prove: $x=8$

STATEMENT	REASON
1. $\overrightarrow{O B}$ is the angle bisector of $\angle R O S$ $m \angle R O B=35$ $m \angle B O S=4 x+3$	1.
2. $\angle R O B \cong \angle B O S$	2.
$3.35=4 x+3$	3.
$4.32=4 x$	4.
$5.8=x$	5.

Some possible reasons:

- Given
- Addition Property of Equality
- Subtraction Property of Equality
- Multiplication Property of Equality
- Division Property of Equality
- Substitution
- Distributive Property
- Combine like terms
- Definition of \qquad
Postulate
Theorem

