

## 1.3 Measuring Angles

NOTES:

| TERM                         | Name it                | Picture |
|------------------------------|------------------------|---------|
|                              | By its vertex:         |         |
| <b>Angle</b> = Two rays with |                        |         |
|                              | By a number:           |         |
|                              |                        |         |
|                              | By a point on each ray |         |
|                              | and the vertex:        |         |
|                              |                        |         |
|                              |                        |         |

$$m \angle DOG =$$

$$\angle DOG =$$

$$G$$

**Equal versus Congruent** 

$$m \angle A = 70^{\circ}$$
$$m \angle BCA = 70^{\circ}$$



∠1 ≅ ∠2

A = ABC is isosceles C



**Classify Angles** 

| Acute Angle | Right Angle | Obtuse Angle | Straight Angle |
|-------------|-------------|--------------|----------------|
|             |             |              |                |
|             |             |              |                |
|             |             |              |                |
|             |             |              |                |
|             |             |              |                |

Use the diagram to answer the following:

$$\angle CBJ \cong \blacksquare$$

$$\angle FJH \cong \blacksquare$$

If  $m \angle EFD = 75$ , then  $m \angle JAB = \blacksquare$ .

If  $m \angle GHF = 130$ , then  $m \angle JBC = \blacksquare$ .



| Term                                                 | Picture                                                   |
|------------------------------------------------------|-----------------------------------------------------------|
| <b>Angle bisector</b> = A segment, ray, or line that | $\overrightarrow{KE}$ is the angle bisector of $\angle K$ |
| divides an angle into                                |                                                           |
|                                                      |                                                           |
|                                                      |                                                           |

#### Given

 $\overrightarrow{AT}$  is the angle bisector of  $\angle MAH$ 

$$m \angle MAT =$$

$$m \angle TAH = 4x + 20$$

Find x



#### Given

$$\angle LOV \cong \angle VOE$$
 $m\angle LOV = 7x - 14$ 
 $m\angle VOE =$ 

Find x



Find  $m \angle LOV$ 

#### **Summarize your notes:**

### 1.3 PRACTICE



# List all the information given by the diagram. 12. 13.





| Label the picture and use it to answer the following. |
|-------------------------------------------------------|
|-------------------------------------------------------|

15.

#### Given

 $\overrightarrow{EI}$  is the angle bisector of  $\angle MEK$   $m \angle MEI = 34^{\circ}$  $m \angle IEK = 3x + 7$ 



16. **Given** 

 $\angle COR \cong \angle ROY$   $m\angle COR = 62^{\circ}$  $m\angle ROY = 82 - 4x$ 



Find x

Find x

17.

#### Given

Find x

 $\overrightarrow{TM}$  is the angle bisector of  $\angle ITY$   $m \angle ITM = 3x + 15$  $m \angle MTY = 7x - 13$ 



18.

#### Given

 $\angle RBO \cong \angle SBO$   $m\angle SBO = 5x + 29$  $m\angle RBO = 2x + 20$ 



Find x

Find  $m \angle MTY$ 

Find  $m \angle RBO$ 



## 1.3 APPLICATION



#### Watch the application walk through video if you need extra help getting started!

#### 3. Geometric Shape

Mr. Kelly loves isosceles trapezoids (below). Help him mark his favorite shape with the following truths:

Isosceles Trapezoid TIMY

a. 
$$\angle ITA \cong \angle MYC$$

b. 
$$\angle TIM \cong \angle IMY$$

c. 
$$\angle IAC$$
 and  $\angle MCY$  are right angles

d. 
$$\overline{TI} \cong \overline{MY}$$

e. 
$$\overline{AT} \cong \overline{CY}$$

f. 
$$\overline{MI} \cong \overline{CA}$$



#### 4. Coordinate Geometry

a. Graph the points

T(-4,6)

R(2,-3)

*I*(10,-2)

- b. Connect the points in order to make a triangle,  $\Delta TRI$ .
- c. Name the obtuse angle.
- d. Measure the obtuse angle.
- e. Find the coordinates of the midpoint of  $\overline{TI}$ . Plot on this point on the graph as point P



- f. Draw  $\overrightarrow{RP}$  are the graph.
- g. If  $\overrightarrow{RP}$  was the angle bisector of  $\angle TRI$ , what would have to be true!

#### 5. Proof

Label the picture and fill in the missing reasons in the two column proof.

**Given:**  $\overrightarrow{OB}$  is the angle bisector of  $\angle ROS$ 

 $m \angle ROB = 35$ 

 $m \angle BOS = 4x + 3$ 

**Prove:** x = 8



| STATEMENT                                                                                                        | REASON |
|------------------------------------------------------------------------------------------------------------------|--------|
| 1. $\overrightarrow{OB}$ is the angle bisector of $\angle ROS$<br>$m \angle ROB = 35$<br>$m \angle BOS = 4x + 3$ | 1.     |
| 2. ∠ <i>ROB</i> ≅ ∠ <i>BOS</i>                                                                                   | 2.     |
| $3.\ 35 = 4x + 3$                                                                                                | 3.     |
| 4.32 = 4x                                                                                                        | 4.     |
| 5. $8 = x$                                                                                                       | 5.     |

#### Some possible reasons:

- Given
- Addition Property of Equality
- Subtraction Property of Equality
- Multiplication Property of Equality
- Division Property of Equality
- Substitution
- Distributive Property
- Combine like terms
- Definition of \_\_\_\_
- Postulate
- Theorem