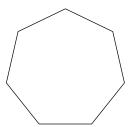
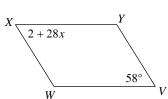
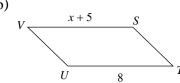

Review Unit 5

Find the measure of one interior angle in each regular polygon. Round your answer to the nearest tenth if necessary.

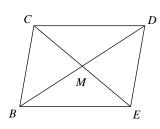


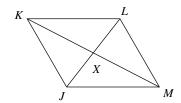
2) regular 18-gon


Find the measure of one exterior angle in each regular polygon. Round your answer to the nearest tenth if necessary.

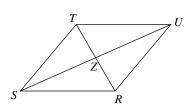


4) regular pentagon


Solve for x. Each figure is a parallelogram.



Find the measurement indicated in each parallelogram.


7)
$$CM = 4x - 2$$

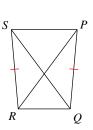
 $CE = 7x - 1$
Find CM

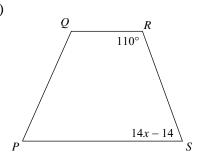

8)
$$KX = -9 + 2x$$

 $KM = 3x - 9$
Find KM

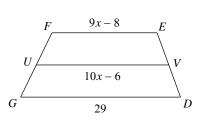
9)
$$SZ = -11 + 2x$$

 $SU = 2x + 2$
Find SU



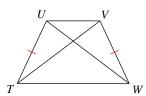

10) Find
$$m \angle V$$

Solve for x. Each figure is a trapezoid.

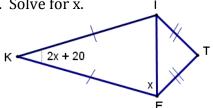

11)
$$PR = 16$$
 $QS = 5x - 14$

Find the length of the midsegment of each trapezoid.

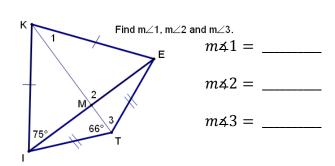
13)

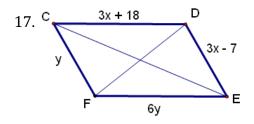


Find the length of the diagonal indicated for the trapezoid.

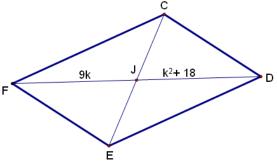

14)
$$UW = 2x + 6$$

$$TV = 3x - 3$$

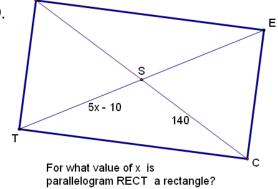

Find UW


15. Solve for x.

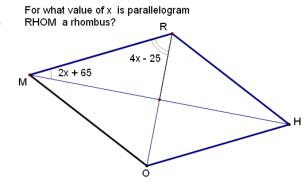
16.



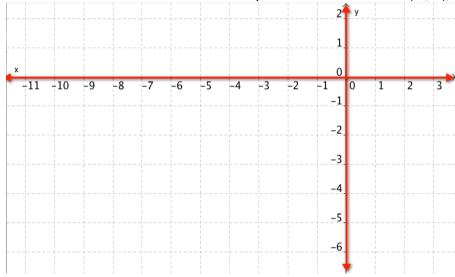
Set up and solve for x and y using a system of linear equations. Assume CDEF is a parallelogram.



18.


Set up and solve a quadratic equation to find the value of x in the following parallelogram.

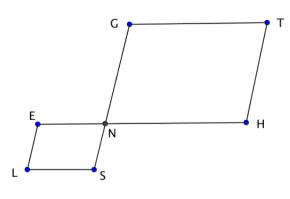
19.


20.

Application and Extension

Show all of your work clearly and completely!

1. The coordinates of the vertices of quadrilateral TRAP are T(-6, 2), R(-10, -3), A(-6, -6) and P(2, -4).



- a. Graph and label TRAP.
- b. Use the slope formula to show that TRAP is a trapezoid.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- c. Examine your answer to part b and determine if TRAP is a right trapezoid. How do you know?
- d. Use the distance formula to determine whether TRAP is isosceles. $D = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$

2. Draw rhombus RHOM with diagonal RO. Find x if $m \not\perp HRO = (5x - 30)^\circ$ and $m \not\perp MRO = (3x + 6)^\circ$.

Given:

☐ LENS and NGTH

Prove: $\angle L \cong \angle T$

4. The car at each vertex of a Ferris Wheel holds a maximum of five people. The sum of the interior angles of the Ferris Wheel is 7740°. What is the maximum number of people the Ferris Wheel can hold

	Solve each equa	ation for x!
	15x + 16 = -2 (x - 1)	$\frac{3}{x-1} = \frac{4}{X+1}$
eview	Multiply! 3. $(x + 4)(x - 4)$	Factor! 4. $x^2 + 2x - 15$
Algebra Review		
	5. Graph the equation: y - x = 0	6. Graph the equation: 4y = x

Unit 5 Theorems

The following theorems *will not* be given on the Unit 5 test. Please make sure you know each theorem well!

Polygon Theorems: \Rightarrow **Polygon Angle-Sum Theorem:** The sum of the measures of the angles = $(n-2)(180^\circ)$.

Corollary: The measure of each angle of a regular n-gon is $\frac{(n-2)(180^\circ)}{n}$

⇒ Polygon Exterior Angle-Sum Theorem: The sum of the measures of the exterior angles of a polygon, one at each vertex, is 360°.

Parallelogram Theorems:

- ⇒ If a quadrilateral is a parallelogram, then its opposite sides are congruent.
- ⇒ If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.
- ⇒ If a quadrilateral is a parallelogram, then its opposite angles are congruent.
- ⇒ If a quadrilateral is a parallelogram, then its diagonals bisect each other.

Theorems for Proving Parallelogram:

- ⇒ If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- ⇒ If an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram.
- ⇒ If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- ⇒ If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- ⇒ If one pair of opposite sides of a quadrilateral is both congruent and parallel, then the quadrilateral is a parallelogram.

Rhombus Theorems:

- ⇒ If a parallelogram is a rhombus, then its diagonals are perpendicular.
- ⇒ If a parallelogram is a rhombus, then each diagonal bisects a pair opposite angles.

Theorems for Proving Rhombuses:

- ⇒ If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.
- ⇒ If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus.

Rectangle Theorems:

- ⇒ If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.
- ⇒ If a parallelogram is a rectangle, then its diagonals are congruent.

Trapezoid Theorems:

- ⇒ If a quadrilateral is an isosceles trapezoid, then each pair of base angles is congruent.
- ⇒ If a quadrilateral is an isosceles trapezoid, then its diagonals are congruent.
- ⇒ **Trapezoid Midsegment Theorem:** If a quadrilateral is a trapezoid, then:
 - 1.) the mid-segment is parallel to the bases, and
 - 2.) the length of the mid-segment is half the sum of the lengths of the bases.

Kite Theorems:

⇒ If a quadrilateral is a kite, then its diagonals are perpendicular.